If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-4n-9=0
a = 2; b = -4; c = -9;
Δ = b2-4ac
Δ = -42-4·2·(-9)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{22}}{2*2}=\frac{4-2\sqrt{22}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{22}}{2*2}=\frac{4+2\sqrt{22}}{4} $
| 2x-8-6x=42 | | (-10+4x)=163 | | 1/2(2n+8)=8 | | (20x-5)(7+3x)(12+4x)=0 | | 2x+5=163 | | n-1.6=5 | | -4h-8+5=35 | | 3x-5x-10=-7+4x-25 | | s+6=7.20 | | (x-4)(x+5)(x+13)=0 | | 6x-3=3(x-4 | | 16.8=f+8 | | (3x+13)=2 | | 3x-44=5 | | 1/5p+11=18 | | 6+n2=3 | | r+23=910 | | x/2.5=4.5/8.2 | | z-42=96 | | -18x-6x=6(1+3x) | | 6+4x=x+9 | | 5/d=9 | | x+12=-x-4 | | (7x-4)=(2x+11) | | h2+17=15 | | 4.5/x=8.2/2.5 | | −5=m+9 | | 9x-(6x+5)=40 | | x+12-8=15 | | (-1/3)c=6 | | r-10.5=28.2 | | 12x+6=12x=9 |